|
- #!/usr/bin/python
- #coding=utf-8
- '''
- If there are Chinese comments in the code,please add at the beginning:
- #!/usr/bin/python
- #coding=utf-8
-
- 示例选用的数据集是MnistDataset_torch.zip
- 数据集结构是:
- MnistDataset_torch.zip
- ├── test
- └── train
-
- 预训练模型文件夹结构是:
- Torch_MNIST_Example_Model
- ├── mnist_epoch1.pkl
-
- '''
-
- import torch
- from model import Model
- import numpy as np
- from torchvision.datasets import mnist
- from torch.nn import CrossEntropyLoss
- from torch.optim import SGD
- from torch.utils.data import DataLoader
- from torchvision.transforms import ToTensor
- import argparse
- import os
- #导入c2net包
- from c2net.context import prepare, upload_output
-
- import importlib.util
-
- def is_torch_dtu_available():
- if importlib.util.find_spec("torch_dtu") is None:
- return False
- if importlib.util.find_spec("torch_dtu.core") is None:
- return False
- return importlib.util.find_spec("torch_dtu.core.dtu_model") is not None
-
- # Training settings
- parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
- parser.add_argument('--epoch_size', type=int, default=1, help='how much epoch to train')
- parser.add_argument('--batch_size', type=int, default=256, help='how much batch_size in epoch')
-
- if __name__ == '__main__':
- args, unknown = parser.parse_known_args()
-
- #初始化导入数据集和预训练模型到容器内
- c2net_context = prepare()
- #获取数据集路径
- MnistDataset_torch_path = c2net_context.dataset_path+"/"+"MnistDataset_torch"
- #获取预训练模型路径
- Torch_MNIST_Example_Model_path = c2net_context.pretrain_model_path+"/"+"GCU_MNIST_Example_Model"
- #获取输出路径
- output_path = c2net_context.output_path
- # load DPU envs-xx.sh
- DTU_FLAG = True
- if is_torch_dtu_available():
- import torch_dtu
- import torch_dtu.distributed as dist
- import torch_dtu.core.dtu_model as dm
- from torch_dtu.nn.parallel import DistributedDataParallel as torchDDP
- print('dtu is available: True')
- device = dm.dtu_device()
- DTU_FLAG = True
- else:
- print('dtu is available: False')
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
- DTU_FLAG = False
-
-
- # 参数声明
- model = Model().to(device)
- optimizer = SGD(model.parameters(), lr=1e-1)
- args, unknown = parser.parse_known_args()
- #log output
- batch_size = args.batch_size
- train_dataset = mnist.MNIST(root=os.path.join(MnistDataset_torch_path, "train"), train=True, transform=ToTensor(),download=False)
- test_dataset = mnist.MNIST(root=os.path.join(MnistDataset_torch_path, "test"), train=False, transform=ToTensor(),download=False)
- train_loader = DataLoader(train_dataset, batch_size=batch_size)
- test_loader = DataLoader(test_dataset, batch_size=batch_size)
- model = Model().to(device)
- sgd = SGD(model.parameters(), lr=1e-1)
- cost = CrossEntropyLoss()
- epochs = args.epoch_size
- print('epoch_size is:{}'.format(epochs))
-
- # 如果有保存的模型,则加载模型,并在其基础上继续训练
- if os.path.exists(os.path.join(Torch_MNIST_Example_Model_path, "mnist_epoch1_0.81.pkl")):
- checkpoint = torch.load(os.path.join(Torch_MNIST_Example_Model_path, "mnist_epoch1_0.81.pkl"))
- model.load_state_dict(checkpoint['model'])
- optimizer.load_state_dict(checkpoint['optimizer'])
- start_epoch = checkpoint['epoch']
- print('加载 epoch {} 权重成功!'.format(start_epoch))
- else:
- start_epoch = 0
- print('无保存模型,将从头开始训练!')
-
- for _epoch in range(start_epoch, epochs):
- print('the {} epoch_size begin'.format(_epoch + 1))
- model.train()
- for idx, (train_x, train_label) in enumerate(train_loader):
- train_x = train_x.to(device)
- train_label = train_label.to(device)
- label_np = np.zeros((train_label.shape[0], 10))
- sgd.zero_grad()
- predict_y = model(train_x.float())
- loss = cost(predict_y, train_label.long())
- if idx % 10 == 0:
- print('idx: {}, loss: {}'.format(idx, loss.sum().item()))
- loss.backward()
- if DTU_FLAG:
- dm.optimizer_step(sgd, barrier=True)
- else:
- sgd.step()
-
-
- correct = 0
- _sum = 0
- model.eval()
- for idx, (test_x, test_label) in enumerate(test_loader):
- test_x = test_x
- test_label = test_label
- predict_y = model(test_x.to(device).float()).detach()
- predict_ys = np.argmax(predict_y.cpu(), axis=-1)
- label_np = test_label.numpy()
- _ = predict_ys == test_label
- correct += np.sum(_.numpy(), axis=-1)
- _sum += _.shape[0]
- print('accuracy: {:.2f}'.format(correct / _sum))
- state = {'model':model.state_dict(), 'optimizer':optimizer.state_dict(), 'epoch':_epoch+1}
- torch.save(state, '{}/mnist_epoch{}_{:.2f}.pkl'.format(output_path, _epoch+1, correct / _sum))
- print(os.listdir('{}'.format(output_path)))
|